MODS XML Attributes:
 Discussion of their Representation in RDF
July 8, 2011

The following table list several of the MODS XML attributes and discusses how the information that they convey might be represented in MODS RDF.

	
	MODS XML Attribute
	Description and proposed resolution for MODS RDF

	1
	altRepGroup
	This attribute is used to indicate that two instances of a given (top-level) element are the same, i.e. alternative representations (different scripts, transliterations, or translations) of the same content.
Thus for example two instances of the name element with the same value of altRepGroup are not different names but are alternative representations of the same name.
This feature could be incorporated using owl:sameAs. See Note 1 for an example.

	2
	authority, authorityURI, and valueURI attributes
	MODS uses the authority attribute where the data is a simple string but that string is a term in a controlled vocabulary, and the authority attribute identifies that vocabulary. However, the authority attribute is also a simple string which itself may be a term in a controlled vocabulary. So MODS introduced two additional attributes, authorityURI, and alternatively, valueURI. authorityURI could be used to unambiguously identify the authority when the string value is supplied, or valueURI could instead be used to completely identify the term unambiguously, both the vocabulary and term, and neither would need to be supplied.

RDF dispenses with this complexity and instead a term in a controlled vocabulary is simply a URI, unambiguously identifying the term. It may implicitly identify the vocabulary but it is not necessary to explicitly separate the vocabulary identifier from the term.

	3
	displayLabel
	The attribute ‘displayLabel’ provides a human readable label for display to the user.

This is easier to include for some elements than for others. For discussion of this see Note 2.

	4
	edition
	Attribute ‘edition’ is used to indicate a particular edition of a classification number, and essentially to indicate a dewey edition.

MODS RDF proposes to define a property for every classification scheme, and that the various Dewey editions would be considered separate classification schemes. This is discussed at the bottom of Note 3.

	5
	ID
	The ID attribute has been included on several MODS elements at the request of METS schema developers. It serves no purpose for standalone MODS, it is used when a MODS record is embedded within a METS record, so that the MODS element can be referenced from a point which is within the METS record but is external to the MODS record.

There are no plans to imbed MODS RDF descriptions within METS XML records. If at some point some analogous referencing mechanism is defined, it can be developed then, but at this time there is no point trying to guess how it would be designed.

	6
	invalid
	Attribute ‘invalid’ is used to indicate that a particular identifier is invalid.

Thought should be given to whether this feature needs to be incorporated. If so, then thought should be given to which identifiers this might apply to. If it is a reasonably small number, then dual properties could be defined for each of those. See further discussion in Note 3.

	7
	language group
	These attributes indicate the language, script, and transliteration of the content.

xml:lang should be used for language (and MODS lang dispensed with). For script and transliteration, see Note 4.

	8
	manuscript and collection
	These two attributes indicate that a resource is a manuscript and/or a collection.

For MODS RDF we suggest that these be represented as resource types, and simply added to the resource type vocabulary.

	9
	nameTitleGroup
	The nameTitleGroup attribute signals that a name and a title may be considered a name/title pair. The attribute applies to name and title, and if a name and title have the same value then they are considered a pair.

This is not necessary in MODS RDF because a name/title pair is expressed as MODS title resolving to a MADS NameTitle.

	10
	objectPart
	Language attribute ‘objectPart’ indicates what part of the described resource the language applies to. For example, the body of a work might be written in French while the abstract is in English.

 Thought should be given to whether this feature needs to be incorporated. If so, then one possible approach is discussed in Note 5.

	11
	shareable
	Attribute ‘shareable’ applies to abstract and tableOfContents.

Thought should be given to whether this feature needs to be incorporated, and if so under what circumstances. Whether these are to be represented as simple properties or blank nodes should be taken into consideration as discussed in Note 2.

	12
	supplied
	“supplied” indicates that the value came from an outside source and thus it is possibly questionable.

The same considerations as discussed for ‘shareable’ would apply to ‘supplied’.

	13
	type: top-level
	The ‘type’ attribute applies to several top-level elements. (See also #14 and #15.)
 In all cases, the proposed MODS RDF defines separate properties for each given type, and thus the type is implicit and need not be named explicitly.

	14
	type: code or text
	The ‘type’ attribute whose value is either “code” or “text” differs from other ‘type’s, and its name, ‘type’, is probably misleading because it does not act as a type in the same manner as other types.

In any case it is not necessary to represent the code or text distinction in RDF because it is implicit in the vocabulary term.

	15
	type: other
	There are various sub-elements (not top-level) that have a type attribute and these need to be examined case-by-case.

	16
	usage (“primary”)
	Attribute ‘usage’, whose only value is "primary", indicates which among repeated elements is most important. It applies to title, subject, genre, name, language, typeOfResource, and classification. See Note 6.
.

	17
	Xlink
	Xlink in MODS is used to point to the data when it is external to the record, rather than to include it inline.

In RDF you would use the rdfResource attribute.

Note1: AltRepGroup Example
Suppose a resource has two resourceTypes: ‘text’ and ‘notatedMusic’

MODS RDF might assign these as follows:
· < hasResourceType rdf:resource=”http://id.loc.gov/vocabulary/ResourceType#text/”/>
· < hasResourceType rdf:resource=”http://id.loc.gov/vocabulary/ResourceType#notatedMusic/”/>
Suppose we also want to include genre statements for these two in Spanish: ‘texto’ and

‘musicaEscrita’

MODS RDF might assign these as follows:

· <hasResourceType rdf:resource=
”http://id.spain.co/vocabulario/tipoDeRecurso #texto/”/>
· <hasResourceType rdf:resource=
”http://id.spain.co/vocabulario/tipoDeRecurso # musicaEscrita/”/>
We want to associate ‘text’ with ‘texto’ and ‘notatedMusic’ with ‘musicaEscrita’

to convey the fact that there are really only two resourctTypes, not four. This could be accomplished using the owl:sameAs property:
· “http://id.loc.gov/vocabulary/ResourceType#text/” owl:sameAs
”http://id.spain.co/vocabulario/tipoDeRecurso #texto/” />
· ”http://id.loc.gov/vocabulary/ResourceType#notatedMusic” owl:sameAs
”http://id.spain.co/vocabulario/tipoDeRecurso # musicaEscrita/”
Note 2: Blank node vs. Data as Object of an RDF Statement
When considering whether or not to include a feature, for example a display label, within the MODS RDF representation for a MODS elements, consider whether the element has a simple representation or requires an intermediate blank node.

In the following simple RDF statement:

 < hasResourceType rdf:resource=”http://id.loc.gov/vocabulary/ResourceType#text/”/>
 the object of property hasResourceType is simple data.

 in contrast consider the following:
<hasOrigin>

<Origin>

<placeOfOrigin> Chicago </placeOforigin>

<publisher> Maxwell House </publisher>

<dateIssued>1998-01-01</dateIssued>

<dateCreated>1997-01-01</dateCreated>

……….

Here, the object of property hasOrigin is Origin, a fabricated class which is in turn the subject for several statements, with properties placeOfOrigin, publisher, etc. Origin is what we sometimes refer to as a “blank node”, used to group multiple statements together. In the first example there is no need for an intermediate blank node because there is only one statement.
It is important to consider this distinction when considering the impact of adding features. For example, suppose you want to add a display label to resource type. You would need to insert an intermediate blank node, because there would no longer be only one data object. In contract, if you want to add a label for hasOrigin, it could be done by simply adding one statement.
There are some MODS elements that may be representable in both forms, simple and blank node. Consider the element <abstract>. It is proposed that abstract could be represented simply as:
<abstract:abstract>Story about a man named Jed.</abstract:abstract >
or
<abstract:content>Poor mountaineer barely kept his family fed</abstract:content >

Where “abstract:” is the prefix representing a vocabulary of abstract types, and in the first example the abstract is untyped (type “abstract”) and in the second, the type is “content”. For an abstract with a type not in an available abstract-type vocabulary, and when it is desired to represent that type, a blank node approach would be used:

<hasAbstract>

<Abstract>

<type>recap</type>

<value>Loaded up the truck and moved to Beverly</value>

</Abstract>
</hasAbstract>

In this case it would be easy to add a display label …..

<hasAbstract>

<Abstract>

<type>recap</type>

<value>Loaded up the truck and moved to Beverly</value>

<displayLabel>This is a recap</displayLable>

</Abstract>
</hasAbstract>
…… as opposed to:

 <abstract:abstract>Story about a man named Jed.</abstract:abstract >
Where there is no place to put the displayLabel without creating an intermediate node.

Note 3. Dual Properties.
The case that this note addresses is exemplified by the example of “invalid” identifiers.
The proposed approach for identifiers is for example for an lccn:

identifier:lccn xxxxxxx
where ‘identifier:lccn’ is a property, and ‘identifier:’ is the prefix for a namespace which is a vocabulary of identifier types.
If you have an isbn instead, you could say
identifier:isbn xxxxxxx

If you wanted to represent the fact that an lccn or isbn is invalid, you could say:
identifier:invalidLccn xxxxxxx
identifier:invalidIsbn xxxxxxx

By this approach, within the vocabulary of identifier types, a dual property would be inserted for each identifier type that could potentially be invalid.

An alternative approach would be to duplicate the entire vocabulary creating a new vocabulary namespace (with prefix) invalidIdentifier:, thus
invalidIdentifier:lccn xxxxxxx
invalidIdentifier:isbn xxxxxxx
Another example of an element that could be treated in this manner is classification. It is proposed to declare properties such as:

 classification:classificationnumber

 classification:lcc

 classification:ddc22

 classification:ddc23

 (etc.)
Where “classification:” is the prefix for a namespace of classification schemes. If we want to indicate that a particular classification number is ‘primary’, that could be done by defining a dual namespace “primaryClassification”.
Note however that this approach does not scale well, for example, if for an identifier you want to be able to indicate both “invalid” and “primary”.
Note 4: Script and Transliteration
Some language codes incorporate script. For example

· xml:lang="zh-Hant"
for Chinese written using the Traditional Chinese script.

· xml:lang="sr-Latn-RS"
For Serbian written using the Latin script as used in Serbia.
And even some incorporate transliteration. For example,

· xml:lang="zh-Latn-wadegile”
for Chinese written in the Latin alphabet, according to the transliteration system developed by Thomas Wade and Herbert Giles;

· xml:lang="ja-Latn-hepburn”
for Japanese written in the Latin alphabet using the transliteration system of James Curtis Hepburn.

Note 5: ObjectPart for Language

Language attribute ‘objectPart’ indicates what part of the described resource the language applies to. For example, the body of a work might be written in French while the abstract is in english. One possible approach for representing objectPart is:
1. define a vocabulary of objectParts.

a. {resource} hasObjectPart http://objectPartVocabulary/body

b. {resource} hasObjectPart http://objectPartVocabulary/abstract

2. Assign identifiers to the above properties.

a. <hasObjectPart rdf:id=”body” rdf:resource=”http://objectPartVocabulary/body “/>
b. <hasObjectPart rdf:id=”abstract” rdf:resource=”http://objectPartVocabulary/abstract “/>
3. Assign languages to parts

a. {resource}#body hasLanguage “french”

b. {resource}#abstract hasLanguage “english”

Note 6: Primary
"primary" applies to title, subject, genre, name, language, typeOfResource, and classification.

· For title, already there is a proposed property ‘hasPrimaryTitle’.

· For subject and genre, there are (proposed) properties hasSubject and hasGenre, and dual properties could be defined: hasPrimarySubject and hasPrimaryGenre.

· For name, there is no hasName property, instead, there are role properties where the range is a name. A hasPrimaryName property could be defined which links (via rdf:id) to the role/name statement corresponding to the primary name.

· For language, an ‘objectPart’ term (see #10) could be defined such that the language of that part is the primary language.

· typeOfResource in general could be indicated via rdf:type, and there could also be a hasPrimaryType propery defined.

· For classification, the discussion in Note 3 applies.
PAGE
1

